Temperature prediction and TAIFEX forecasting based on fuzzy relationships and MTPSO techniques
نویسندگان
چکیده
In this paper, we proposed a modified turbulent particle swarm optimization (named MTPSO) method for the temperature prediction and the Taiwan Futures Exchange (TAIFEX) forecasting, based on the two-factor fuzzy time series and particle swarm optimization. The MTPSO model can be dealt with two main factors easily and accurately, which are the lengths of intervals and the content of forecast rules. The experimental results of the temperature prediction and the TAIFEX forecasting show that the proposed model is better than any existing models and it can get better quality solutions based on the high-order fuzzy time series, respectively. 2009 Elsevier Ltd. All rights reserved.
منابع مشابه
Short term load forecast by using Locally Linear Embedding manifold learning and a hybrid RBF-Fuzzy network
The aim of the short term load forecasting is to forecast the electric power load for unit commitment, evaluating the reliability of the system, economic dispatch, and so on. Short term load forecasting obviously plays an important role in traditional non-cooperative power systems. Moreover, in a restructured power system a generator company (GENCO) should predict the system demand and its corr...
متن کاملA Novel Dual Factor Fuzzy Time Series Forecasting based on new Fuzzy sets and Interval Definition by Evolution Strategies
This paper proposes a new dual factor time-invariant fuzzy time series method that is capable of forecasting stock market Price Index. The proposed approach uses a new fuzzy logic relationship definition. According to the utilized membership degrees used to define the fuzzy relationships, each datum may belong to two distinct intervals rather than only one interval. This assumption, which has n...
متن کاملTown trip forecasting based on data mining techniques
In this paper, a data mining approach is proposed for duration prediction of the town trips (travel time) in New York City. In this regard, at first, two novel approaches, including a mathematical and a statistical approach, are proposed for grouping categorical variables with a huge number of levels. The proposed approaches work based on the cost matrix generated by repetitive post-hoc tests f...
متن کاملForecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)
The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...
متن کاملTemperature prediction using fuzzy time series
A drawback of traditional forecasting methods is that they can not deal with forecasting problems in which the historical data are represented by linguistic values. Using fuzzy time series to deal with forecasting problems can overcome this drawback. In this paper, we propose a new fuzzy time series model called the two-factors time-variant fuzzy time series model to deal with forecasting probl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 37 شماره
صفحات -
تاریخ انتشار 2010